InstallShield Tips & Tricks

FLE)éR\A

SOFTWARE

MSI Tip: Writing to the Log File from a
Custom Action

By Robert Dickau
Principal Technical Training Writer
Flexera Software

Abstract

A new requirement with Windows Vista is that custom actions write success or failure
information to an MSI log file. Windows Installer automatically writes startup and shutdown
information for custom actions into the log; this article describes different techniques for
writing more detailed information into the log file.

MSI Log File Basics

An MSI log file is a text file that provides a great deal of information about an installation
program during a given run on a particular system, including:

e Final property values
e Startup information for actions
e Status, warning, and error messages

There are several ways to create an MSI log file, including:
1. Use the /L switch to msiexec.exe, as in this command:
msiexec /i product.msi /L*Vv everything.log

The characters "*v" after the /L switch indicate to perform verbose logging of every
action taken by Windows Installer. The MSI help library describes the other switches
you can use to limit the information contained in a log file.

If your release settings include creation of a setup.exe launcher, you can use the MSI
Command Line Arguments setting in the release properties to pass in the /L switch
to msiexec.exe, with a value such as this:

/L*v "% TEMP%6\everything.log"

Note that you cannot use MSI properties in the log-file path, as properties will not be
available until after the installation has initialized. The command above relies on the
command processor expanding the % TEMP% environment variable.

2. With MSI 4.0 on Windows Vista, you can set the MsiLogging property to a string
containing the logging flags you want to use. With InstallShield 2008, you can set this
using the Create MSI Logs setting in the Product Properties view. The path to the log
file will be stored in the MsiLogFileLocation property. (Note that you can read this
property but not set it.) Using this switch in the InstallShield environment also

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved. 10f6
IS_MSI_Writing_to_the_Log_File_TT_Aug08

InstallShield Tips & Tricks

displays the Show the Windows Installer Log check box in the SetupCompleteSuccess
dialog box.

The MSI help library describes other options, such as setting the Logging policy in the
registry, which creates a randomly-named log file in the Temp directory for every MSI
installation.

The MSI Log File Analyzer, available under InstallShield's Tools menu, can generate an MSI
log file and create various color-coded HTML reports based on a log file.

By default, an MSI log file contains a return value for each built-in and custom action. The
following sections describe how to write more detailed information into the log file. Note
that these techniques do not create an MSI log file or initiate logging, but instead write to a
log file created by the /L switch, the MsiLogging property, or the like.

InstallScript Custom Actions

In an InstallScript custom action, you can call SprintfMsiLog to write a string to the MSI log
file. For example, the following InstallScript code prototypes and defines an InstallScript
custom action called LoggingTestlnstallScript.

#include "ifx.h"

// standard custom action prototype
export prototype LoggingTestinstallScript(HWND);

// custom action definition

function LoggingTestlnstallScript(hlnstall)

begin
SprintfMsiLog("Calling LoggingTestlnstallScript...");
// return success to MSI
return ERROR_SUCCESS;

end;

In order to be called, the custom action must be scheduled in the sequences. For this
example, open the Custom Actions view and create an immediate-mode InstallScript custom
action called callLoggingTest that calls the LoggingTestlnstallScript function, and schedule it
to run after LaunchConditions.

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved. 20f6
IS_MSI_Writing_to_the_Log_File_TT_Aug08

InstallShield Tips & Tricks

fle Edt Vew Go Project uid Tools Window Help

Do ve DD t4e> ¢ | IS@XLIBIS0 0 - B
I Start Page 1 Project Assstant T Irstalaton Desgrer Custom Actions 5=
+ 5 Instadation [riformabon - ﬁ Ciustom Aclions Cprmmon |
: l_\] m!:mmcw, 6 S = callloggingTest Custom Action
: i_l i L C B " 3 -
¥ =) System Configuration Function Name Logping TestinstalSenpt -
: .l-_l ;:;w‘;ﬁnw Rt Processing Synchronous (Chedk et code)
_151 ﬁ I ‘:@: In-5cript Exgcution Immediate Execubon
ﬁ Custom Actons Execution Scheduling Abways execubs
5 5*»130'2'.": i‘s Irestall UT Sequence After LaunchConditions
;', System Search Iristall LIE Condition
(1] Property Manager Install Exec Sequence <Absent from sequence>
= L ner Tnterfacs

After building the package and running it with the /L*v switch, you should see a line similar
to the following in the log file:

InstallShield 25:00:00: Invoking script function LoggingTestinstallScript
1: Calling LoggingTestlnstallScript...

InstallShield 25:00:00: CallScriptFunctionFromMsiCA() ends

Action ended 25:00:00: callLoggingTest. Return value 1.

The SprintfMsiLog function is similar to the Sprintf and SprintfBox functions, in that you can
include placeholders ("%s" or "%d" fields, called "format specifiers") in the message string
if you want to splice in the values of string or numeric variables.

VBScript Custom Actions

With VBScript actions (as well as with MSI DLL actions, described in the following section),
the general process is to assemble a record containing the message information, and then
send the record to the running installation. With VBScript, you use Installer.CreateRecord to
create the message record, and use Session.Message to send the record to the running
installation.

The record begins with a "template” in field O, which is a string containing placeholders of
the form [1], [2], and so forth. These placeholders will then be filled in with the values in
record fields 1, 2, and so on.

To demonstrate a VBScript action writing to the log, you can create an immediate-mode
VBScript custom action called callLoggingTestVBS, scheduled immediately after
LaunchConditions, with the following code.

(For this example, you can store the code directly in the custom action since the script is
short. In practice, using an external .vbs file is generally recommended so you can specify a
function return value and optionally exit the installer from the custom action.)

Const msiMessageTypelnfo = &H04000000

' create the message record
Set msgrec = Installer.CreateRecord(1)

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved. 30f6
IS_MSI_Writing_to_the_Log_File_TT_Aug08

' field O is the template
msgrec.StringData(0) = "Log: [1]"

' field 1, to be placed in [1] placeholder
msgrec.StringData(1) = "Calling LoggingTestVBS..."

' send message to running installer
Session.Message msiMessageTypelnfo, msgrec

InstallShield Tips & Tricks

The action might appear similar to the following figure.

[

StartPage | ProjectAssstant | Instalabion Desgrer

Custom Actions &

o) instalation Information
3 Organizabon

+ (D) Apphcation Data

=) System Configuration
) Server Configuraton
) Beharior and Logc

ﬁ] IrstalSerpt

&) Custom Actions

2| sequences

4 Support Files

() System Search

A1 Property Manager

) User Interface

vy Bkad

= {5 Custoen Actons
| callloggingTest

Comman 5.;,-‘,{'

calll ogging TestVBS

Return Processng

[-Soript Exaciiban
Execubon Schedulng
Use 6480t Saripbing
Erestadl U] Sequence
Enstal U] Conadibon
[restall Exec Sequence

Advertics Exar Sequence | <Aboent from seguence >

Custom Action

Synchronous (Ohedk exif cade)
Irinedate Exsouban

Alvays exetule

Ma

After LaunchConditions

<Absent from segquence >

After building the project and creating a log file, the following lines should appear in the log:

Action 25:00:00: callLoggingTestVBS.

Action start 25:00:00: callLoggingTestVBS.

[-..lines omitted...]

Log: Calling LoggingTestVBS...
Action ended 25:00:00: callLoggingTestVBS. Return value 0.

A possible refinement is to modify the template field (field 0) of the record to include a
timestamp or information about whether the action is being called from immediate
execution or deferred execution. Studying the log messages displayed by standard actions
can provide a useful model.

MSI DLL Custom Actions

In an MSI DLL custom action written with C or C++, the process of writing to the log file is
similar to the VBScript code, except that you use MsiCreateRecord to create the message
record and MsiProcessMessage to pass the record to the running installer.

You begin by creating a C or C++ DLL project in Visual Studio, for example. The C++ code
for this example might look like the following.

#pragma comment(lib, "msi.lib™)

#include
#include
#include

// standard MSI DLL custom action signature

UINT __ stdcall LoggingTestCpp(MSIHANDLE hinstall)

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved. 4 of 6

IS_MSI_Writing_to_the_Log_File_TT_Aug08

InstallShield Tips & Tricks

{
PMSIHANDLE hRecord = MsiCreateRecord(1);
// field O is the template
MsiRecordSetString(hRecord, 0, "Log: [1]");
// field 1, to be placed in [1] placeholder
MsiRecordSetString(hRecord, 1, "Calling LoggingTestCpp...");
// send message to running installer
MsiProcessMessage(hlnstall, INSTALLMESSAGE_INFO, hRecord);
return ERROR_SUCCESS;

¥

To ensure that the function name is properly exported from the DLL, you can create a .def
file with contents similar to the following:

LIBRARY "LoggingTestCpp" ; DLL name

EXPORTS ; exported function names
LoggingTestCpp

The DLL project in Visual Studio might look similar to the following.

Ik LespgingTestCpp - Microsolt Yisual Studio
Bie [Edt Yew Project Guld Debug Tooks Windew Comeunity Help

-GG @ b D@D - & - b Dot ~ 0 S A
Loggng TestCpp.def ' Loggimsg TestCppocpp -
ohabal Soope] 1' W Logorg Tes tCppMEIHANDUE hingesl)

[2 #pragma comment(lib, "msi.1ib7)

Binclude cwindows . hy
#include <msi.h> &3 LoggingTessCpo.qop
#include <msiquery.hs] LogpngTestiop.def

[FUINT __sedeall LogpingTestCpp(MSIHANDLE hInstall)
{
PMSIHANDLE hRecord = MsiCreateRecord(1);
MsiRecordSetString(hRecord, @, TEXT("Log: [1]7));
MsiRecordSetString(hRecord, 1, TEXT{"Calling LoggingTestlpp...")); cPtse... [} &

MsiProcessMessage(hInstall, INSTALLMESSAGE_INFO, hRecord); L TestCpp VCCodeFunction v

return ERROR_SUCCESS; v (21

After building the DLL, in InstallShield you can create an MSI DLL custom action, for this
example calling it callLoggingTestCpp, and again scheduling it for immediate execution after
LaunchConditions.

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved. 50f6
IS_MSI_Writing_to_the_Log_File_TT_Aug08

InstallShield Tips & Tricks

Start Page i Project Assistant I Instalation Desgner Custom Actions =
&) irstalabon Informaton = .ﬁgmm Actions Common |
+ {7y OfganEaton N call aoongTest _
- = callloggingTestCpp Custom Action
+# 3 Applcation Data B ol oooraTesiion fl - - . -
¥+ % System Configur abon E calloggngTestves | [Pt F"""*‘:""' <PATH_TO_DERUIG_FILES> Y ogongTestCre. 4 ‘!
* | Server Configuration Function MName LogongTestloo |
% Behanier and L R turn Prooedang Synchronous (Cheok exit code])
=l Loge 2 2
@ F—— En<5Script Exeoution Ermedate Exeoution
y Ing] : = i
ﬁ Cutton Excuiten Sohechulng Alwlys ExatE
'-_4' ; I:"-';ﬁ Endtal UL Saguerios Afper LaurchConditions
. Tnatal L Conditon
t System Search Frabal :u.u- Lo i = Al o, o i

After rebuilding the project and running the MSI with the logging switch, lines similar to the
following should appear in the log file.

Action 25:00:00: callLoggingTestCpp.

Action start 25:00:00: callLoggingTestCpp.

[...lines omitted...]

Log: Calling LoggingTestCpp...

Action ended 25:00:00: callLoggingTestCpp. Return value 1.

For more information, see the MSI help library topic "Windows Installer Logging".

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved. 6 of 6
IS_MSI_Writing_to_the_Log_File_TT_Aug08

